Se il discriminante dell'equazione e' minore di zero allora non ho nessuna soluzione quindi non posso fare riferimento ad x1 ed x2 Allora per vedere il segno del trinomio ax2 + bx + c devo riferirmi a qualcos'altro: in matematica io so che un quadrato ha sempre il segno positivo, quindi cerco di isolare parte del trinomio facendola diventare un quadrato: come prima cosa metto in evidenza a fra i vari termini ax2 + bx + c = Ma se a non c'e' in tutti i termini come si fa a metterla in evidenza? Per metterla in evidenza basta prima farla comparire moltiplicando i termini senza a per a/a (e' come moltiplicarli per 1) abx ac = ax2 + ------ + ----- = a a ora posso mettere in evidenza la a raccogliendo quella al numeratore bx c = a(x2 + ----- + ----) = a a ora il primo termine entro parentesi e' quadrato, posso considerare il secondo come doppio prodotto. il termine da aggiungere (e togliere) perche' venga un quadrato e' b2 ----- 4a2 eseguo bx b2 b2 c = a(x2 + ----- + ------ - ------ + ----) = a 4a2 4a2 a Scrivo i primi tre termini come quadrato e negli ultimi due faccio il minimo comune multiplo b b2 - 4ac = a[(x + ---- )2 - ------------] 2a 4a2 e questa e' un'espressione di cui conosciamo il segno, infatti:
quindi posso dire: Se il delta e' minore di zero il trinomio e' sempre positivo per tutti i valori della x
|